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NOMENCLATURE 

5[Gr$/5]1’5; 
value of G* at the neutral condition; 
Value of G* at which non-linear disturbance 
mechanisms arise; 

gx3 q”x 

v2 k ’ 
value of C* at which transition begins; 
surface heat flux; 
periodicpart oflongitudinal velocity disturbance; 
characteristic local velocity; 
streamwise coordinate. 

Greek symbols 

#L 
v’, 

generalized disturbance frequency; 
kinematic viscosity. 

I. INTRODUCTION 

THE ACCUMULATION of specific information concerning dis- 
turbance growth and Row transition mechanisms of vertical 
natural convection flows, leads to detailed consideration of 
the interaction of naturally occurring background disturb- 
ances. Initial instability and downstream amplification of 
controlled disturbances are well understood. The predictions 
of linear theory are in very good agreement with experi- 
ments. See for example, Gebhart [l] and Gebhart and 
Mahajan [2]. Nonlinear growth characteristics have also 
been studied. Audunson and Gebhart [3] have calculated 
the resulting secondary mean motions. Jaluria and Gebhart 
[4] have measured such motions and changing disturbance 
characteristics with nonlinear effects. 

On the other hand, there have been many observations 
of the subsequent event of transition, resulting from 
naturally occurring disturbances. See, e.g. Godaux and 
Gebhart 151. Jaluria and Gebhart 161 and Mahaian and 
Gebhart [?I. Here we consider the ieiation between what 
is known about growth of controlled disturbances and the 
way naturally occurring disturbances cause transition. We 
investigate this largely unknown aspect of natural convec- 
tion transition by comparing growth in controlled experi- 
ments with abundant data of observed transition arising 
from naturally occurring disturbances. 

We will estimate the effect the initial amplitude of an 
input disturber has on progression toward transition, and 
on events during transition. Also considered is the effect of 
the frequency spectrum of the input disturbance on the 
disturbance frequency observed ahead of and during tran- 
sition. The considerations which arise are discussed in the 
light of experimental data concerning disturbance mag- 
nitude. 

L EXPERIMENTAL RESULTS 

Characteristics of naturally occurring disturbances were 
measured in a flow generated adjacent to a flat vertical 
surface, dissipating a uniform surface heat flux, in water. 
The arrangement and techniques are the same as those used 
by Jaluria and Gebhart [6] in investigating the events 
during transition, in a flow subject only to naturally occur- 
ring disturbances. Present observations clarify the mech- 
anisms whereby disturbances initiate transition. 

1. Disturbance frequency and the beginning q[trunsition 
A disturbanceentering the boundary layer IS characterized 

by its energy spectrum. When the magnitude is small, we 
may think of it as a group of individual periodic disturb- 
ances of different frequency and amplitude. In controlled 
experimentation, a disturbance ofsingle frequency is studied. 
Such experiments, along with theory, have shown that dis- 
turbances in a very narrow band of frequency are much 
more rapidly amplified downstream. 

A naturally occurring disturbance contributes a spectrum 
of frequencies, as confirmed by our hot-wire measurements 
of back~ound disturbances. We have found no dominant 
frequency. However, selective amplification, or filtering, still 
occurs downstream, see [2]. Jaluria and Gebhart [4] found 
that this frequency persists even into and through the 
non-linear range. Essentially all the disturbance energy is 
concentrated there until the beginning of transition. 

Even during transition the disturbance associated with 
the rem~ning-laminar portion of the fluid remains at the 
theorv-arrived filtered frequencv. A different and higher 
dominant frequency is associated with the locally turbulent 
portion of the flow. This second frequency increases during 
transition, in nondimensional terms. This is discussed in 
detail in [6]. These frequency characteristics do not follow 
from the form of the initial naturally-occurring input dis- 
turbance. The observed frequencies in the non-linear range, 
and into transition, are determined only by the heat Rux. 

The transition Grashof number G& denotes the location 
of first turbulence in the flow. See Jaluria and Gebhart [6]. 
NOW, GF, was found to be a function of the heat flux 
input 4”. Their measurements, and others, led Jaluria and 
Gebhart [6] to formulate the beginning of transition as: 

/ ,,2 \2,15 = E. 

2. Disturbance growth 
The initial finding of Godaux and Gebhart [S], that the 

Grashof number at which transition begins is a function of 
the heat-flux q”, was refined and corroborated with new 
data, and with the results of others, by Jaluria and Gebhart 
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FIG. 1. Downstream amplification of the longitudinal velocity disturbance u’ component, in terms of the 
disturbance amplitude at G* = 400, (u’)~~,,. Data: 0, 4” = 210.5 W/m’; x , 4” = 627.0 W/m’. 

[6]. The consequence, that a single value of E apparently 
signals transition in water, is a curious result, in several 
ways. It asserts that transition is independent of the mag- 
nitude of the random, naturally occurring background dis- 
turbances. One might reasonably surmise, on the contrary, 
that initially larger disturbances would reach and complete 
transition sooner, in x, for a given 4”. However, if that is 
not the case, as suggested by the success of E, then different 
amounts of linear and nonlinear amplification must add up 
to about the same final disturbance amplitude at the same 
downstream location. We note, however, that there must, 
reasonably, be some appropriate limiting condition on the 
differences between linear and nonlinear amplification rates. 
A flow may not actually reach transition earlier for smaller 
initial disturbances. We will qualitatively investigate these 
questions. 

In the linear growth range the amplification rate is 
independent of amplitude. At any given frequency, the ratio 
of the amplitude, AZ/Al, after and before any particular 
downstream interval x1 to x2, depends only on G: and 
G:. However, the deviation of the growth rate from linear 
surely depends on the relative disturbance level u’/U, where 
u’ is the amplitude of the longitudinal component of the 
local velocity disturbance and U is the maximum local 
mean flow velocity. This is suggested by linear analysis, 
nondimensionalization is accomplished in terms of this 
parameter. Measurements, by Jaluria and Gebhart [9], also 
indicate that significant nonlinear effects arise’ when this 
quantity attains a definite value, dependent on the heat 
flux level. Analogous results have been obtained in forced 
flow. See for example, Klebanoff et al. [lo]. 

Measurements of subsequent nonlinear downstream 
growth are shown in Fig. 1 for naturally occurring dis- 
turbances and for q” of 210.5 and 627.0 W/m2. The measured 
maximum disturbance amplitudes u’ are normalized by the 
value at G* = 400, for 4” = 210.5 W/m’. For the lower q”, 
the growth rate becomes greater than linear at around 
G* = 440. However, the rate soon decreases rapidly, and 
the actual amplitude becomes less than that by linear pro- 
cesses alone above about G* = 650. Actual transition began 
at about G* = 625 and was complete at around G* = 2&O. 
The transition limits for a” = 627.0 W/m2 are G* = 500 and 
1400. The curves at the two values’ of q”, and at other 
values as well, are very similar. The growth at the higher 4” 
has deviated from linear at a lower value of G*, indicating 
that higher disturbance levels were reached, at a given G*, 
for higher 4”. 

We will use the measured nonlinear disturbance growth, 
to determine the effect of varying initial input disturbance 
amplitude on the beginning of transition, and on observed 
mechanisms during transition. The calculations of Audunson 
and Gebhart [3] were of secondary mean flows, not of 
nonlinear growth rates of u’. 

Now a smaller input disturbance would have encountered 
nonlinear effects further downstream, where the energy level 
of the flow is greater. The flow kinetic energy flux varies 
as G*‘12 and the total convected thermal energy, Q, as 
G*5, for a given value of 4”. Thus, an initially smaller 
disturbance may be expected to grow more rapidly after the 
appearance of nonlinear mechanisms. A detailed investi- 
gation of nonlinear disturbance growth might establish this 
proposition in general. However, we shall use the measured 
growth pattern for all postulated initial disturbance magni- 
tudes, in the supposition that all disturbances follow it 
from initial nonlinear deviation. 

We do not know which specific disturbance characteristic 
determines nonlinear events. The level u’/U determines their 
first appearance, as a function of the heat flux. Since the 
beginning of transition cannot be predicted by linear 
analysis, it is not known that the disturbance level u’/U 
determines either the onset of transition or the events sub- 
sequent thereto. On the other hand, the absolute disturbance 
magnitude may be the determining factor. We shall con- 
sider both these possibilities. 

Consider 4” = 210.5 W/m2. Growth was linear until 
G* = 440. For a smaller input disturbance, nonlinearity 
would be reached further downstream. However, U also 
increases downstream and the absolute disturbance ampli- 
tude would have to be higher if nonlinear deviation 
required the same disturbance level u’/U. For example, had 
the input disturbance amplitude been one-third that of the 
one that led to the data of Fig. 1, we calculate that 
nonlinear effects would first appear at G* = 535. However, 
the actual physical amplitude of the disturbance would be, 
calculated from linear theory, about 15.7% higher than that 
measured at G* = 440. The corresponding values for a dis- 
turbance of one-tenth initial magnitude are G* = 620 and 
29.4%. For a disturbance of three times the initial magni- 
tude, nonlinear effects first appear at G* = 360 where the 
physical amplitude is 14% lower than that measured. 

Considering now nonlinear growth, we have plotted in 
Fig. 2 the measured nonlinear growth, at q” = 210.5 W/m’, 
of the disturba,rce beyond the point ofdeviation, G:r = 440, 
normalized by its value at G&. All disturbances, of varying 



436 Shorter Communications 

FIG. 2. Downstream amplification of u’ alter the first appear- 
ance of non-linear effects, G&, at q” = 210.5 W/cm*, in 

terms of the disturbance amplitude at G&, (u’)~~. 
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FIG. 3. Linear and nonlinear disturbance amplitude growth, 
for varying input disturbance amplitude. The values indi- 
cated refer to the ratio of the amplitude of the input 
background disturbance for each given curve, to that for the 

measured curve, at q” = 210.5 W/cm*. 

input amplitude, are assumed to grow according to theory 
in the linear range and according to Fig. 2, thereafter. The 
strong similarity between the two curves in Fig. 1, as well 
as other measurements, strongly supports this assumption. 

We will investigate two suppositions; that the nonlinear 
mechanisms are determined, first, by the physical magnitude 
of the disturbance and, second, by its level relative to the 
mean flow. Since linear theory does not predict transition, 
the first may be more reliable. 

We see from Fig. 2 that the disturbance magnitude u’ 
at transition is 7.75 times that at the onset of nonlinear 
effects. Recall that the amplitude at nonlinear deviation 

for an initial amplitude of one-third, one-tenth and three 
times the experimental one is 15.7 and 29.4% higher and 
14% lower, respectively. Therefore, for the first, the same 
disturbance amplitude is reached when the disturbance 
value on Fig. 2 is 7.75/1.157 = 6.7. This is at G;, = 695, 
or a delay of about 11.2% in from the experimental value 
of G:, = 625. However, this is only about 5.4% in E, 
equation (1). The values for the one-tenth initial amplitude 
are G& = 768, a delay of only 22.9% in G* and 1 I.lg’ in E. 
For three times they are G& = 572, which is 8.5% upstream 
in G*. Clearly, the adjustment in growth sequence results 
in small changes in both G;, and E, for very different initial 
amplitudes. 

In fact, nonlinear growth mechanisms operated in the 
laminar flow from G* = 440 to the end of transition, at 
G* = 2000. At an intermediate point during transition, at 
G* = 1090, the growth has been by a factor of 30, accounting 
for the linear range as well, we find the remarkable result 
that the one-third, one-tenth and the three-fold initial 
amplitude disturbances would reach amplitudes, at G* = 
1090, which are within a few percent of the same value. 
Thus, the effect of initial amplitude on subsequent tran- 
sition events is also very greatly reduced, due again to the 
flattening of the nonlinear growth curve. 

These results are perhaps clearer in Fig. 3. Both the 
linear and non-linear regions are shown. The convergence 
to about the same amplitude, after the appearance of non- 
linear effects, is very fast. We note, incidentally, that the 
nonlinear disturbance growth rate approaches a constant 
value during transition, as indicated by the linear form of 
the growth curves in Fig. 1. 

The differences estimated for the onset of transition 
would be even further reduced either if smaller initial dis- 
turbances eventually grew more rapidly by nonlinear mech- 
anisms, or if larger disturbances grew more slowly, due to 
the lower mean flow energy available for growth. Kinetic 
energy flux varies as G*5’2 cc E, a quantity which correlates 
the onset of transition. The local kinetic energy flux at first 
nonlinear deviation, for a one-third initial magnitude, is 
about 63% higher than in the experimental circumstance. 
The possible effect of kinetic energy flux level on nonlinear 
disturbance growth merits further investigation. An interest- 
ing parallel question is the kinds of conditions on the 
amplification processes which ensure that weaker initial 
disturbances do not, in fact, lead to earlier transition. 

Consider now the second possibility, wherein transition 
is characterized not by the physical magnitude, but by the 
relative disturbance level, i.e. by u’/U. The value of this 
quantity observed at the beginning of actual transition at 
G = 625, is at G = 705,785 and 555 for one-third, one-tenth 
and three-fold amplitude disturbances, respectively. These 
values are 12.8% later, 25.6% later and 11.2% earlier, in G*, 
and 6.3% larger, 12.1% larger and 5.4% smaller, in E. Again, 
we have calculated, on the basis of u’/U, the disturbance 
levels at G = 1090. They are again within a few percent of 
the measured level. 

Thus, the two suppositions produce similar results. The 
beginning of transition is not greatly affected by a variation 
in the magnitude of the initial disturbance, nor are sub- 
sequent events during transition. Similar results were found 
using other measured growth rates. Our results lend support 
to a single transition parameter like E, which is independent 
of input disturbance amplitude. 

During our experiments quoted there was very little 
change in the measured natural disturbance level. Repeat- 
ability was also very good. However, in similar experiments 
in a different experimental arrangement [9], presumably 
with adifferent background disturbance level, G& was about 
4% different. 

In a similar manner, we may estimate the initial mag- 
nitude of the actual input disturbance, at the neutral 
stability location upstream, from linear theory predictions. 
For the measured frequency, this location is Gg = 64. From 
the magnitude at G* = 400 the velocity disturbance at GE 
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NOMENCLATURE 

dimensionless total band absorption; 
dimensionless slab band absorption; 
diameter ; 
band width parameter; 
exponential integral; 
Planck radiosity; 
defined by equation (14); 
gas-surface exchange factor [dimensionless] ; 
slab thickness; 
nongray transfer functions; 
length; 
mean beam length; 
optically thin mean beam length; 
optically thick mean beam length; 
emitted radiative flux; 
absorbed radiative flux; 
radius; 
spectral boundary radiosity; 
integrated band intensity; 
surface-gas exchange factor; 
path length; 
gas temperature; 
dimensionless mean beam length. 

*Assistant Professor. 

Greek symbols 

8. band finestructure parameter; 

p* direction cosine; 
PET absorbing gas density; 
TX, optical depth based upon length x; 
& azimuthal angle. 

INTRODUCTION 

ENGINEERING approximations for the analysis of radiative 
energy transfer from gases frequently involves the assump- 
tion of a uniform temperature. This proves to be a useful 
concept, for example, in a highly turbulent, well-stirred 
reactor and thus finds considerable application in the design 
of combustion devices for varied purposes. The isothermal 
assumption reduces the calculation of radiative transfer to 
the evaluation of transfer integrals depending only upon 
the geometry of the enclosure, with the radiation properties 
appearing parametrically. In general, closed form solutions 
are possible only for a limited number of simple con- 
figurations or in the limits of small and large optical paths. 
Hottel and Sarofim [l] have given a rather complete dis- 
cussion of exchange areas and mean beam lengths for 
various geometries. Their discussion is largely limited to 
gray gases. These topics are also discussed from an 
occasionally different point of view by Siegel and Howell [2]. 


